

NOV. 2012 OVERRIDE DATABASE OVER-NORMALIZATION WITH SYSTEM DESIGN, 1

Abnormal Normalization

Override database over-normalization with System
Design

Need for performance

limits transactional

database design

Database efficiency driven by Data Modeling and

System Design

Efficiency and quality-performance of the transactional

database is typically achieved through normalization of

the database. However, when over-normalized, the result

is dramatic database seizures, sluggishness, and non-

response, resulting in increased redesign costs.

The focus of this technical paper is for business owners

and their database administrators to take cognizance of

nuances of transactional databases and optimize its

stability by aligning the database with sustainable system

design, rather than over-normalization.

Need for performance limits transactional database

design

While Data Modeling offers the scope of designing a

database that can incorporate features for future use,

most designers are compelled, by the costs of

development and the need to achieve quick performance,

to compromise and conceive neutral data models. These

models meet immediate user requirements at minimal

cost and perform on real-time basis.

What is a transactional database?

A critical phase of a database is its ability to handle a

transaction. Typically, a transaction is an event of work

performed on a database management system – which

necessarily has to be performed atomically, entirely,

consistently and cause no effect when durably stored.

NOV. 2012 OVERRIDE DATABASE OVER-NORMALIZATION WITH SYSTEM DESIGN, 2

The purpose of

normalization is to

overcome anomalies

arising out of insertion,

deletion and updates

Six forms of

normalization

This means integrity of the data is paramount and the

database has to handle independent work events on a

single transaction of data storage.

For example, if you purchase software for your business, a

transactional double-entry should include your credit to

your banking account as well as debit to your software

vendor. Your database becomes a transactional database

when your database can be rolled back to rewrite a

transaction that was not completed due to a power failure

or loss of internet connection. To achieve maximum

integrity and transactional instances, the database has to

be maintained through several processes. One such

process is normalization.

Why are databases normalized?

A database is a group of logical units called fields under a

common category or table with an established relation

between them so that dependency and redundancy are

minimized.

The further division of these tables into smaller tables, so

as to lower redundancy, and establish the relationship

between them is called normalization. This is done to

improve the scope for the increased instances of

modification, addition as well as deletion of fields in a

given table, to eventually map to the defined

relationships.

Historically, Edgar.F.Codd evolved this method of

relational model normalization in 1970. Later theorists

also contributed and as a result One Normal Form (1NF)

to Six Normal Form (6NF) is currently in use.

The Six forms of normalization are

• 1st Normal Form

• 2nd Normal Form

• 3rd Normal Form

• Boyce-Codd Normal form(BCNF)

• 4th Normal Form

• 5th Normal Form

• Domain Key Normal Form

NOV. 2012 OVERRIDE DATABASE OVER-NORMALIZATION WITH SYSTEM DESIGN, 3

 Over-normalization

occurs when there are far

too many JOINs

Recommended levels of Normalization

Though, it is recommended that relation normalization is

best until third normal form, the ease of normalization has

resulted in over-normalization that results in several

unnatural scenarios of database operations.

While the standard practice is for the database design to

build in capabilities for complete normalization; most

administrators do opt for de-normalization for specific

performance requirements, following a normalization

process. This is recommended to lower the instances of
Joins in queries to a manageable level.

What is over-normalization?

In a transactional database, over-normalization occurs

when there are far too many JOINs used to access data; to

the extent that performance is penalized and database

enters deadlocks.

Typically, huge applications will quickly implement de-

normalization to achieve rapid scaling back to normal

performance. However, for small and medium businesses,

normalization occurs when data duplication is to be

avoided as business needs alter extensively over a period

of time.

Therefore, it is common to reach 3NF and its alternate

form BCNF at the most and not go beyond it as the trade-

off topples the balanced database. Wherever excessive

Normal Forms are reached, there is a trade-off with

relation to speed and performance of certain applications

you may be using.

Why should system design override normalization?

Due to over normal forms, database tables become top-

heavy and a liability and need add-up processes such as:

quick de-normalizing of tables into caching tables, or

adding of new database schema to keep the database

primed. All this leads to loss of efficiency, storage and of

course increased costs due to normal forms that simply

exist because of the over normalization.

NOV. 2012 OVERRIDE DATABASE OVER-NORMALIZATION WITH SYSTEM DESIGN, 4

System Design should

override

Normalization is recommended only when it is relevant

and achieves desired requirements and optimizes

performance. If normalization is below level, then it leads

to repetition and overburdening.

While over-normalization causes the greatest harm, an

extensive and un-natural number of JOINs across

innumerable tables. Therefore, over-normalization is not

recommended and instead allowing integrated and

sustainable system design to override offers better ROI on

the transactional database.

Take Away

Data Modeling and System Design bring intrinsic value to

the database. It is better to spend time on robust

database model and design rather than slave hours away

on non-productive maintenance which will finally result

in redesigning. System Design should override

transactional database maintenance and not over-

normalization.

